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ABSTRACT 

During the last years, a new type of Systems-on-Chip 
called, Reconfigurable Systems-on-Chip (RSoCs), has 
appeared. The design of such systems is a complex task and 
requires innovative methods to support the development 
process. In this paper, we present two alternative 
approaches for the efficient architecture exploration of 
RSoCs, based on SystemC language and on OCAPI-xl 
environment. The approaches introduced, allow early 
evaluation of alternative mappings of system’s functionality 
onto different architectures. As a result, the time consuming 
iterations from lower design stages are eliminated, and 
reduced design time is achieved. The paper proves the 
effectiveness of the proposed approaches through three 
different case studies, borrowed from complementary 
domains. 

1. INTRODUCTION 

The inclusion of reconfigurable hardware in Systems-
on-Chip offers several advantages. It combines computation 
efficiency and flexibility in the use of hardware resources 
over time, allows area optimization through sharing of 
hardware resources in time among different tasks, post 
fabrication upgrading of functionality (improving time to 
market) and post-fabrication bug fixing.  

The design of a Reconfigurable System-on-Chip 
(RSoC) is not a trivial task. To obtain an efficient 
implementation, extended design flows are needed to cope 
with the reconfiguration aspects and overheads 
(reconfiguration time and power, and memories for 
configurations storage). More important, efficient 
architecture exploration methods are essential to ensure 
correct architecture decisions early in the design cycle and 
eliminate time consuming iterations from low level design 
stages in case constraints are not met.  

 Many high-level design approaches for 
reconfigurable systems rely on compilation of C or C-like 
descriptions of applications targeting on reconfigurable 
hardware [1]. Recently, a few co-compilation and co-
synthesis type design approaches for reconfiguration have 
been published [2]. UML has been widely used for system 
specification and documentation. In [3, 4], researchers have 
presented different approaches to extend the UML to the 
reconfigurable system design domain.  

Reconfigurable hardware brings a new dimension to 
system partitioning. The dynamic reconfiguration requires 
partitioning to address both temporal and spatial 
dimensions. Such an automatic partitioning is, in the 
general case, still an unsolved problem. Nevertheless, in 
specific cases, solutions for temporal partitioning [5], for 
task scheduling [6] and for context management [7] have 
been proposed.  
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Fig. 1 System level modeling for RSoC. 

As far as architecture exploration and mapping are 
concerned, there are two approaches supported by the 
existing commercial design flows: (a) the tool oriented 
design flow, and (b) the language oriented design flow. 
Example of tool oriented design flow is the N2C by 
CoWare [8]. The design flows supported by such tools 
work well on traditional hardware/software solutions. The 
incorporation of new reconfigurable parts is not possible 
without unconventional trickery. Examples of language 
oriented design flows are OCAPI-xl [9] and SystemC [10]. 
Especially for the latter, since it promotes the openness of 
the language and the standard, the addition of a new domain 
can be made to the core language itself. However, the 
method mostly preferred is to model the basic constructs 
required for modeling and simulation of reconfigurable 
hardware, using basic constructs of the language. In this 
way, the language compatibility with existing tools and 
designs is preserved. SystemC and OCAPI-xl extensions 
for reconfigurable SoC design are discussed in detail in 
Sections 2 and 3 respectively.  

The rest of the paper is organized as follows: In 
Sections 2 and 3, architecture exploration methods based on 
SystemC language and on OCAPI-xl environment are 
detailed respectively. Case studies’ results from three 
different domains are described in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. SYSTEMC BASED ARCHITECTURE 
EXPLORATION FOR RSOCS 

The SystemC-based approach focuses on the system 
partitioning and design space exploration for run-time 
reconfigurable SoCs. In the SystemC-based approach, a 
new architecture is defined partly based on an existing 
architecture and partly using the system specification as 
input. We assume the initial architecture and the HW/SW 
partition are given at the beginning of system-level design. 
The SystemC extension is designed to work with a 
SystemC model of the existing device to suit the design 
considering Run-Time Reconfiguration (RTR) hardware. 
The provided support in the SystemC approach include:  
a) estimation and analysis support for design space 
exploration and system partitioning, and b) reconfiguration 
modeling using standard mechanisms of SystemC, and a 
transformation tool to automatically generate SystemC 
models of the reconfigurable hardware. 

 
Estimation approach The estimation approach starts from 
function blocks represented using C-language and produces 
hardware execution time and resource utilization estimates 
for each function block. The estimator works on one 
function block at a time. The SUIF-based [11] front-end 
pre-processor is used to extract Control-Data Flow Graphs 
(CDFG) from the C code. Then a set of high-level synthesis 
tasks is carried out to produce the estimates. ASAP and 

ALAP scheduling is used to determine the critical paths, 
from which we estimate the execution time. A modified 
version of Force-Directed Scheduling (FDS) is used to 
estimate the hardware resources required for the tasks. 
Finally, allocation algorithms are used to estimate the 
hardware resources required for interconnections with 
multiplexer types of interconnection units. The current 
estimator targets a Virtex2-like FPGA in which the main 
resources are LookUp-Tables (LUTs) and multipliers.  

 
Modeling Reconfiguration Overhead A SystemC model, 
called Dynamically ReConfigurable Fabric (DRCF) 
component, is developed to model the configuration 
overhead. Different features associated with the 
reconfigurable technology are not directly modeled in the 
DRCF component. Instead, the DRCF component contains 
the functions that describe the behavior of the 
reconfiguration process and relates the performance impact 
of the reconfiguration process to a set of parameters. Thus, 
by tuning the parameters, designers can easily evaluate the 
trade-offs between different technologies without going into 
implementation details. At the moment, the following 
parameters are available for designers: a) the length of the 
required memory space, which represents the size of the 
context, and b) delays associated with the reconfiguration 
process in addition to delays of memory transfers. 

In order to enable the DRCF component to capture and 
understand incoming messages, the SystemC modules of 
the candidate components must implement the read(), 
write(), get_low_addr() and get_high_addr() interface 
methods. In fact, these interface methods are very common 
for bus slave modules in transaction-level models.  

A general model of a reconfigurable SoC is shown in  
Fig. 1. The DRCF component is a single hierarchical 
SystemC module, which instantiates the candidate 
components (F1 to Fn). Each candidate component 
occupies separate system address space and is an individual 
SystemC module. The Configuration Scheduler (CS) 
monitors the operation states of the candidate components 
and controls the configuration process. The Input Splitter 
(IS) is an address decoder and it manages all incoming 
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Fig. 2 Sequentializing computation over time. 

Interface-Method-Calls (IMCs). If it detects an incoming 
IMC to an unloaded task, it informs the CS that the task 
should be loaded and hold the IMC until the loading is 
done. Otherwise, the IMC is forwarded to the target 
module. 

In order to reduce the coding effort, we have developed 
a tool that can automatically transform SystemC modules of 
the candidate components into a DRCF component. A 
script file is used to guide the transformation process and 
record the parameters, e.g. configuration latency. The 
outputs are SystemC files of a new reconfigurable SoC 
system, in which those specified candidate components are 
replaced with a DRCF component. 

3. OCAPI-XL ARCHITECTURE EXPLORATION 
FOR RSOCS 

OCAPI-xl is a C++ based design environment for 
development of concurrent, heterogeneous HW/SW 
applications. It abstracts away the heterogeneity of the 
underlying platform through an intermediate-language layer 
that provides a unified view on SW and HW components. 
The language is directly embedded in C++ via a creatively 
designed set of classes and overloaded operators [9], and 
has an abstraction level between assembler and C. 

OCAPI-xl’s design-flow starts at high (typically 
C/C++) level and goes all the way down to the 
implementation in a sequence of incremental steps. The 
OCAPI-xl design flow can be divided as follows: 

1. Identification of code suitable for parallelisation 
2. Partitioning of the single-threaded C/C++ code 

into parallel tasks 
3. Mapping of the functional model from step 2 onto 

the architecture 
4. Refinement of selected processes to OCAPI-xl 

embedded language, which can then be used in 
HW, as well as in SW scenarios. 

At the stages from 2 to 4, OCAPI-xl provides the 
designer with simulation results as well as quantitative 
figures of system throughput, activity, performance etc. (i.e. 
it provides important feedback directing new refinement 
steps). 

 
OCAPI-xl extension for the design of RSoC The OCAPI-
xl based approach demonstrates the ability to model and 
analyse system partitioning and mapping already at the 
system level. Relevant design steps have been enhanced to 
include reconfigurability aspects. The provided support for 
the OCAPI-xl related approach includes: 

• Software process scheduling extension. 
• High-level modelling of context switching. 

 
Software Processes Scheduling Extension In the high-level 
software model of computation, concurrency is considered 
at the processor level. This means that for every process 

there is a separate processor assumed. Naturally, in real life 
this will typically not be the case. In realistic software 
implementation an operating system allows all the 
processes to be assigned to the same software processing 
resource. So, from the performance point of view, the 
processes are not running concurrently, but they are 
sequentialized by the operating system scheduler onto the 
processing unit. To model such behaviours in the OCAPI-xl 
performance model, a separate process type, 
procManagedSW, has been introduced. To be able to create 
a process of the type procManagedSW, the designer must 
create a scheduling object. This scheduler will perform the 
actual sequentialization of all the processes Fig. 2 illustrates 
sequentialization of three processes exploiting Round-
Robin scheduler. The user has the opportunity to exploit a 
predefined set or define its own scheduler for targeted 
operating system. 

It is important to realize that switching between the 
different SW tasks is not penalty-free. In order to come to 
most accurate performance results, context-switching 
overhead is also considered in the performance model. The 
user can define extra context switching time for every 
process created, which is then applied to that process during 
the OCAPI-xl simulation. 
 
High-Level Modeling of Context Switching The ability to 
reschedule a task either in HW or SW is an important asset 
in a RSoC. To support this feature, high-level 
implementation and management of HW/SW relocatable 
tasks in OCAPI-xl have been modelled. The aim was to 
model a pre-emptive relocation of tasks from the 
reconfigurable logic to the SW and vice versa. The model 
supports spatial temporal scheduling in HW and SW. 
Within this model, it is in principle also possible to model 
resource sharing at the HW level, by replacing one task 
with another on the same physical reconfigurable resource 
and by adding the appropriate contexts.  

4. DESIGN CASES 

4.1 WCDMA 

A WCDMA detector [12] has been selected as a design 
case to validate the SystemC-based approach. The target is 
an RTR-type of implementation and the implementation 
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Fig. 3 WCDMA receiver baseband system. 

platform was the VP20FF1152 development board, which 
contains one Virtex2P XC2VP20 FPGA (predefined 
RSoC). The whole WCDMA base-band receiver system is 
depicted in Fig. 3. The case study focuses on the detector 
portion (gray area in Fig. 3) of the receiver and a limited set 
of the full features were taken into account. The detector 
case used 384 kbits/s user data rate without handover. 

The design started from C representation of the system. 
The estimation approach and prototype tool described in 
Section 2 has been used. Based on the resource estimates, 
the final dynamic context partition is as following: the 
channel estimator is assigned to one context (1387 LUTs), 
and the other three processing blocks are assigned to a 
second context (1078 + 463 + 287 = 1828 LUTs). This 
partition results in balanced resource utilization and less 
communication traffic across the contexts. 

A fixed system has been created, in which all of the 
four detector functions are mapped onto separate hardware 
accelerators and the scheduling task is mapped onto a 
software task that runs on the embedded PowerPC 
processor core. The prototype tool mentioned in Section 2 
has been used to automatically generate the DRCF 
component from the fixed system. The SystemC models are 
described at the transaction level, in which the workload is 
derived based on the estimation results but with manual 
adjustment. The performance simulation shows that the 
system requires 2 reconfiguration requests per slot. When 
the configuration clock is running at 33 MHz, the 
reconfiguration latency is 2.73 ms for 16 bits configuration 
bit-width. 

Vendor-specific tools were used in the system 
refinement and implementation phases. The SystemC-based 
approach does not produce RTL synthesizable code. C code 
and RTL-VHDL code were manually created. The 
reconfiguration was implemented using SystemACE CF 
solution and the control function of the SystemACE module 
was inserted into the SW code. The module-based partial 
reconfiguration design flow is used to implement the two 
contexts in the Virtex II Pro. In the implementation, 920 
LUTs and 4 Block RAMs are required for the context 
containing the channel estimator, and 1254 LUTs, 6 Block 
RAMs and 12 Block Multipliers are required for the other 
context. The static part requires 1199 LUTs and 25 Block 
RAMs. 21 bus macros are used to connect the static part 
and dynamic contexts. The size of the partial bit streams 
generated for the context-1 and the context-2 are 278k bytes 

and 280k bytes respectively. When the system is running at 
100 MHz, the decoding time of one slot of data is 9.66 ms 
including the reconfiguration latency. 
 
Evaluation A fixed hardware and a pure software 
implementation have been developed as reference designs. 
In the fixed-hardware implementation, the processing time 
for decoding one slot of data is 1.06 ms at 100MHz, but the 
design doubles the resource requirement compared to the 
RTR system. In the full software implementation, the 
processing time for one slot of data is 294.6 ms, over 30 
times compared to the RTR system. This does not fulfill the 
real-time requirements. 

The WCDMA detector design case is based on sample 
by sample processing and is not ideal for demonstrating the 
RTR benefits. It was selected for the validation of the 
SystemC-based design methodology. Through the design 
case, the estimation approach and the DRCF modeling 
approach have shown their usefulness by providing 
reasonably accurate results without going into low-level 
implementation. With C code and test data that were 
available in the WCDMA detector design case, the design 
at the system-level took less than a week. 

4.2 Wireless LAN 

In this section, the prototyping of a HIPERLAN/2 [13] 
RSoC on ARM integrator prototyping platform is 
described. ARM Integrator includes the ARM AHB 
motherboard, the core modules containing ARM processors 
and the logic modules containing FPGAs.  

An ANSI C model has been developed for the MAC 
and physical layers’ functionality of the system. The size of 
the model is 20000 lines of code. Using the ANSI-C model 
as input, OCAPI-xl models of the HIPERLAN/2 MAC and 
physical layers have been developed. For the high level 
exploration, high-level OCAPI-xl processes (procHLHW, 
procHLSW and procManagedSW) have been used. Using 
the performance estimation (in terms of execution cycles) 
capabilities of OCAPI-xl different mappings of 
HIPERLAN/2 tasks on hardware and software have been 
evaluated and the most promising solution has been 
identified.  

Based on (a) the system level architecture exploration,  
(b) the analysis of the HIPERLAN/2 computational 
complexity and (c) performance constraints, two core 
modules and two logic modules have been allocated for the 
realization of the HIPERLAN/2 system. Each core module 
includes an ARM7TDMI processor and each logic module 
includes a Xilinx Virtex E 2000 FPGA. The architecture of 
the ARM Integrator instance that has been selected for the 
realization of the HIPERLAN/2 system is shown in  
Fig. 4. The first core module acts as protocol processor 
realizing the major part of the HIPERLAN/2 DLC 
functionality. The second core module realizes the lower 
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Fig. 4 Architecture of selected ARM Integrator platform instance. 
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Fig. 5Block  diagram of the simple profile MPEG-4 video decoder  
with indication of final HW/SW partitioning 

part of the HIPERLAN/2 MAC functionality and also 
controls the operation of the baseband processing part. The 
first logic module (bottom FPGA) realizes the frequency 
and data domain parts of the baseband receiver. The second 
logic module (top FPGA) realizes the baseband transmitter, 
the time domain blocks of the baseband receiver, the 
interface to MAC and a slave interface to an AMBA bus.  

In the next step the high level OCAPI-xl model has 
been refined by changing processes’ types from high level 
to low level (procOCAPI1 and procANSIC). This allowed a 
cycle accurate simulation of the complete system 
functionality and confirmation that timing constraints are 
met. After this step, hardware and software development 
started. The ARM development tools have been used to 
map the developed C++ code on the ARM processors’ of 
the targeted platform. The code and the data for the tasks 
are stored in SDRAM memory. The size of the code 
running on the protocol processor is 1.4 Mbytes while the 
size of the code running on the second processor is 50 
Kbytes. Both ARM processors operate at 50 MHz. 

A typical FPGA design flow has been adopted for the 
realization of the tasks assigned on the platform’s logic 
modules starting from VHDL. The total utilization of the 
bottom logic module (FPGA) is 85% (93 I/Os, 14923 
function generators, 12164 CLB slices, 6368 flip 
flops/latches). The total utilization of the top logic module 
is 89% (312 I/Os, 16527 function generators, 11252 CLB 
slices, 8544 flip flops/latches). The size of the configuration 
files for the two FPGAs is 1,2 Mbytes. Two clocks of 40 
and 80 MHz are driven in each FPGA. 
 
Evaluation The performance results presented above from 
the realization of the HIPERLAN/2 system on the ARM 
Integrator platform are expected to improve in a 
reconfigurable SoC implementation. This is due to the 
overheads introduced by the ARM Integrator platform 
architecture. The use of the proposed system level 
architecture exploration approach allowed the definition of 
an efficient architecture that satisfied the targeted 

performance constraints. No time consuming iterations and 
feedback loops from the low level implementation stages 
for architecture modifications were required.  

4.3 MPEG4 Decoder 

MPEG-4 Video Decoder (see Fig. 5) has been selected to 
demonstrate that OCAPI-xl based approach, as described in 
Section 3, is a highly suitable approach for designing the 
reconfigurable SoCs at the system level.  

The initial C/C++ code was obtained from Final Draft 
International Standard sources. After the optimisation 
phase, the design proceeded with modelling of performance 
estimation in OCAPI-xl environment. A number of small 
tests were done on the board to find the operator execution 
times and memory access times and to select proper 
memory architecture. Taking into account the analysis 
results from optimisation phase, the most CPU time and 
memory access demanding blocks of the decoder were 
selected to become the candidates for HW acceleration. To 
demonstrate early RSoC design evaluation, the design was 
modelled in two flavours:  

• Configured as pure SW version of MPEG-4 
decoder running on soft processor core. 

• Configured as HW accelerated version, where 
most cycle demanding blocks have been 
implemented in reconfigurable HW. 
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After a SW processes annotation, the performance 
estimation started with simulation of the pure SW version 
of the decoder. For HW accelerated version of the decoder, 
the OCAPI-xl processes have been redefined to high-level 
hardware (HLHW) type. Comparing the average frame time 
with pure SW version, the speed-up of factor 4.2 was 
estimated. The final HW/SW partitioning of the MPEG-4 
video decoder for both versions is shown in Fig. 5. 
 
Evaluation The key benefit shown by this design case is 
demonstration of ability of high-level simulation-based 
performance estimation and evaluation of context switching 
between the different computation resources. Based on the 
performance estimation results, it is possible to construct a 
trade-off curve for considered HW/SW partitions. This 
gives the designer unique opportunity to evaluate at early 
stage of the design process, which of the components is 
beneficial to implement in reconfigurable HW and which 
ones will be running in SW. As a result, design time costly 
lower-level iterations are eliminated. 

The accuracy of estimations has been measured by 
comparing the difference between the estimated 
performance and board performance. The difference is 8% 
which is acceptable for the most relevant test sequence.  

The design was mapped on Xilinx’s Multimedia 
Development Board containing xc2v2000 Virtex-II FPGA 
with a single embedded MicroBlaze soft processor gaining 
46% utilization (5000 slices) for HW accelerator and 71% 
utilization (7703 slices) for the whole decoding system. It 
uses 33% of available 18x18 multipliers, 76% block RAMs 
and 52% of LUTs. Synplify-Pro FPGA synthesis tool and 
vendor specific toolsets have been used in the 
implementation phase. 

5. CONCLUSIONS 

For the efficient design of complex RSoCs within strict 
design time constraints, efficient design methodologies at 
the early design stages are required. The proposed 
architecture design space exploration methods rely on the 
use of SystemC language and OCAPI-xl environment. 
Through appropriate extensions, they address 
reconfiguration issues at a high level. The effectiveness of 
the proposed methods has been proven through their 
application on three real life systems, borrowed from 
different domains: a WCDMA system, a WLAN system 
and an MPEG4 decoder.  
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