
 1

SYSTEM LEVEL ARCHITECTURE EXPLORATION FOR RECONFIGURABLE SYSTEMS
ON CHIP

Konstantinos Masselos

Imperial College of Science Technology and
Medicine, Exhibition Road, London, SW7 2BT,

United Kingdom
k.masselos@imperial.ac.uk

Yang Qu, Kari Tiensyrjä

VTT Electronics
P.O.Box 1100, FIN-90571 Oulu, Finland

Yang.Qu@vtt.fi, kari.tiensyrja@vtt.fi

Nikolaos S. Voros

INTRACOM Telecom Solutions
254 Panepistimiou str., 26443, Patra, Greece

voni@intracom.gr

Miroslav Cupak, Luc Rijnders

IMEC
Kapeldreef 75, B-3001 Leuven, Belgium

cupac@imec.be, rijnders@imec.be

Marko Pettissalo

Nokia Technology Platforms
P.O.Box 50, FIN-90571 Oulu, Finland

marko.pettissalo@nokia.com

ABSTRACT

During the last years, a new type of Systems-on-Chip
called, Reconfigurable Systems-on-Chip (RSoCs), has
appeared. The design of such systems is a complex task and
requires innovative methods to support the development
process. In this paper, we present two alternative
approaches for the efficient architecture exploration of
RSoCs, based on SystemC language and on OCAPI-xl
environment. The approaches introduced, allow early
evaluation of alternative mappings of system’s functionality
onto different architectures. As a result, the time consuming
iterations from lower design stages are eliminated, and
reduced design time is achieved. The paper proves the
effectiveness of the proposed approaches through three
different case studies, borrowed from complementary
domains.

1. INTRODUCTION

The inclusion of reconfigurable hardware in Systems-
on-Chip offers several advantages. It combines computation
efficiency and flexibility in the use of hardware resources
over time, allows area optimization through sharing of
hardware resources in time among different tasks, post
fabrication upgrading of functionality (improving time to
market) and post-fabrication bug fixing.

The design of a Reconfigurable System-on-Chip
(RSoC) is not a trivial task. To obtain an efficient
implementation, extended design flows are needed to cope
with the reconfiguration aspects and overheads
(reconfiguration time and power, and memories for
configurations storage). More important, efficient
architecture exploration methods are essential to ensure
correct architecture decisions early in the design cycle and
eliminate time consuming iterations from low level design
stages in case constraints are not met.

 Many high-level design approaches for
reconfigurable systems rely on compilation of C or C-like
descriptions of applications targeting on reconfigurable
hardware [1]. Recently, a few co-compilation and co-
synthesis type design approaches for reconfiguration have
been published [2]. UML has been widely used for system
specification and documentation. In [3, 4], researchers have
presented different approaches to extend the UML to the
reconfigurable system design domain.

Reconfigurable hardware brings a new dimension to
system partitioning. The dynamic reconfiguration requires
partitioning to address both temporal and spatial
dimensions. Such an automatic partitioning is, in the
general case, still an unsolved problem. Nevertheless, in
specific cases, solutions for temporal partitioning [5], for
task scheduling [6] and for context management [7] have
been proposed.

 2

Instruction
set

processor

HW
accelerator Reconfigurable

co-processor

Interconnection bus

shared
memory

configuration
memory

Input
splitter

configuration
scheduler

configuration
memory

F1 F2 Fnshared
memory

inputclock reset

output
DRCF component

Fig. 1 System level modeling for RSoC.

As far as architecture exploration and mapping are
concerned, there are two approaches supported by the
existing commercial design flows: (a) the tool oriented
design flow, and (b) the language oriented design flow.
Example of tool oriented design flow is the N2C by
CoWare [8]. The design flows supported by such tools
work well on traditional hardware/software solutions. The
incorporation of new reconfigurable parts is not possible
without unconventional trickery. Examples of language
oriented design flows are OCAPI-xl [9] and SystemC [10].
Especially for the latter, since it promotes the openness of
the language and the standard, the addition of a new domain
can be made to the core language itself. However, the
method mostly preferred is to model the basic constructs
required for modeling and simulation of reconfigurable
hardware, using basic constructs of the language. In this
way, the language compatibility with existing tools and
designs is preserved. SystemC and OCAPI-xl extensions
for reconfigurable SoC design are discussed in detail in
Sections 2 and 3 respectively.

The rest of the paper is organized as follows: In
Sections 2 and 3, architecture exploration methods based on
SystemC language and on OCAPI-xl environment are
detailed respectively. Case studies’ results from three
different domains are described in Section 4. Finally,
conclusions are drawn in Section 5.

2. SYSTEMC BASED ARCHITECTURE
EXPLORATION FOR RSOCS

The SystemC-based approach focuses on the system
partitioning and design space exploration for run-time
reconfigurable SoCs. In the SystemC-based approach, a
new architecture is defined partly based on an existing
architecture and partly using the system specification as
input. We assume the initial architecture and the HW/SW
partition are given at the beginning of system-level design.
The SystemC extension is designed to work with a
SystemC model of the existing device to suit the design
considering Run-Time Reconfiguration (RTR) hardware.
The provided support in the SystemC approach include:
a) estimation and analysis support for design space
exploration and system partitioning, and b) reconfiguration
modeling using standard mechanisms of SystemC, and a
transformation tool to automatically generate SystemC
models of the reconfigurable hardware.

Estimation approach The estimation approach starts from
function blocks represented using C-language and produces
hardware execution time and resource utilization estimates
for each function block. The estimator works on one
function block at a time. The SUIF-based [11] front-end
pre-processor is used to extract Control-Data Flow Graphs
(CDFG) from the C code. Then a set of high-level synthesis
tasks is carried out to produce the estimates. ASAP and

ALAP scheduling is used to determine the critical paths,
from which we estimate the execution time. A modified
version of Force-Directed Scheduling (FDS) is used to
estimate the hardware resources required for the tasks.
Finally, allocation algorithms are used to estimate the
hardware resources required for interconnections with
multiplexer types of interconnection units. The current
estimator targets a Virtex2-like FPGA in which the main
resources are LookUp-Tables (LUTs) and multipliers.

Modeling Reconfiguration Overhead A SystemC model,
called Dynamically ReConfigurable Fabric (DRCF)
component, is developed to model the configuration
overhead. Different features associated with the
reconfigurable technology are not directly modeled in the
DRCF component. Instead, the DRCF component contains
the functions that describe the behavior of the
reconfiguration process and relates the performance impact
of the reconfiguration process to a set of parameters. Thus,
by tuning the parameters, designers can easily evaluate the
trade-offs between different technologies without going into
implementation details. At the moment, the following
parameters are available for designers: a) the length of the
required memory space, which represents the size of the
context, and b) delays associated with the reconfiguration
process in addition to delays of memory transfers.

In order to enable the DRCF component to capture and
understand incoming messages, the SystemC modules of
the candidate components must implement the read(),
write(), get_low_addr() and get_high_addr() interface
methods. In fact, these interface methods are very common
for bus slave modules in transaction-level models.

A general model of a reconfigurable SoC is shown in
Fig. 1. The DRCF component is a single hierarchical
SystemC module, which instantiates the candidate
components (F1 to Fn). Each candidate component
occupies separate system address space and is an individual
SystemC module. The Configuration Scheduler (CS)
monitors the operation states of the candidate components
and controls the configuration process. The Input Splitter
(IS) is an address decoder and it manages all incoming

 3

 procManagedSW

P1

P2

P3

Fig. 2 Sequentializing computation over time.

Interface-Method-Calls (IMCs). If it detects an incoming
IMC to an unloaded task, it informs the CS that the task
should be loaded and hold the IMC until the loading is
done. Otherwise, the IMC is forwarded to the target
module.

In order to reduce the coding effort, we have developed
a tool that can automatically transform SystemC modules of
the candidate components into a DRCF component. A
script file is used to guide the transformation process and
record the parameters, e.g. configuration latency. The
outputs are SystemC files of a new reconfigurable SoC
system, in which those specified candidate components are
replaced with a DRCF component.

3. OCAPI-XL ARCHITECTURE EXPLORATION
FOR RSOCS

OCAPI-xl is a C++ based design environment for
development of concurrent, heterogeneous HW/SW
applications. It abstracts away the heterogeneity of the
underlying platform through an intermediate-language layer
that provides a unified view on SW and HW components.
The language is directly embedded in C++ via a creatively
designed set of classes and overloaded operators [9], and
has an abstraction level between assembler and C.

OCAPI-xl’s design-flow starts at high (typically
C/C++) level and goes all the way down to the
implementation in a sequence of incremental steps. The
OCAPI-xl design flow can be divided as follows:

1. Identification of code suitable for parallelisation
2. Partitioning of the single-threaded C/C++ code

into parallel tasks
3. Mapping of the functional model from step 2 onto

the architecture
4. Refinement of selected processes to OCAPI-xl

embedded language, which can then be used in
HW, as well as in SW scenarios.

At the stages from 2 to 4, OCAPI-xl provides the
designer with simulation results as well as quantitative
figures of system throughput, activity, performance etc. (i.e.
it provides important feedback directing new refinement
steps).

OCAPI-xl extension for the design of RSoC The OCAPI-
xl based approach demonstrates the ability to model and
analyse system partitioning and mapping already at the
system level. Relevant design steps have been enhanced to
include reconfigurability aspects. The provided support for
the OCAPI-xl related approach includes:

• Software process scheduling extension.
• High-level modelling of context switching.

Software Processes Scheduling Extension In the high-level
software model of computation, concurrency is considered
at the processor level. This means that for every process

there is a separate processor assumed. Naturally, in real life
this will typically not be the case. In realistic software
implementation an operating system allows all the
processes to be assigned to the same software processing
resource. So, from the performance point of view, the
processes are not running concurrently, but they are
sequentialized by the operating system scheduler onto the
processing unit. To model such behaviours in the OCAPI-xl
performance model, a separate process type,
procManagedSW, has been introduced. To be able to create
a process of the type procManagedSW, the designer must
create a scheduling object. This scheduler will perform the
actual sequentialization of all the processes Fig. 2 illustrates
sequentialization of three processes exploiting Round-
Robin scheduler. The user has the opportunity to exploit a
predefined set or define its own scheduler for targeted
operating system.

It is important to realize that switching between the
different SW tasks is not penalty-free. In order to come to
most accurate performance results, context-switching
overhead is also considered in the performance model. The
user can define extra context switching time for every
process created, which is then applied to that process during
the OCAPI-xl simulation.

High-Level Modeling of Context Switching The ability to
reschedule a task either in HW or SW is an important asset
in a RSoC. To support this feature, high-level
implementation and management of HW/SW relocatable
tasks in OCAPI-xl have been modelled. The aim was to
model a pre-emptive relocation of tasks from the
reconfigurable logic to the SW and vice versa. The model
supports spatial temporal scheduling in HW and SW.
Within this model, it is in principle also possible to model
resource sharing at the HW level, by replacing one task
with another on the same physical reconfigurable resource
and by adding the appropriate contexts.

4. DESIGN CASES

4.1 WCDMA

A WCDMA detector [12] has been selected as a design
case to validate the SystemC-based approach. The target is
an RTR-type of implementation and the implementation

 4

Channel
estimator

Adaptive
FIR

Multipath
combining

Correlator
bank

Frame
& Slot

sync

De-
Interleaver

Detector
Channel
decoder

RF and
Pulse shaping

Searcher

Fig. 3 WCDMA receiver baseband system.

platform was the VP20FF1152 development board, which
contains one Virtex2P XC2VP20 FPGA (predefined
RSoC). The whole WCDMA base-band receiver system is
depicted in Fig. 3. The case study focuses on the detector
portion (gray area in Fig. 3) of the receiver and a limited set
of the full features were taken into account. The detector
case used 384 kbits/s user data rate without handover.

The design started from C representation of the system.
The estimation approach and prototype tool described in
Section 2 has been used. Based on the resource estimates,
the final dynamic context partition is as following: the
channel estimator is assigned to one context (1387 LUTs),
and the other three processing blocks are assigned to a
second context (1078 + 463 + 287 = 1828 LUTs). This
partition results in balanced resource utilization and less
communication traffic across the contexts.

A fixed system has been created, in which all of the
four detector functions are mapped onto separate hardware
accelerators and the scheduling task is mapped onto a
software task that runs on the embedded PowerPC
processor core. The prototype tool mentioned in Section 2
has been used to automatically generate the DRCF
component from the fixed system. The SystemC models are
described at the transaction level, in which the workload is
derived based on the estimation results but with manual
adjustment. The performance simulation shows that the
system requires 2 reconfiguration requests per slot. When
the configuration clock is running at 33 MHz, the
reconfiguration latency is 2.73 ms for 16 bits configuration
bit-width.

Vendor-specific tools were used in the system
refinement and implementation phases. The SystemC-based
approach does not produce RTL synthesizable code. C code
and RTL-VHDL code were manually created. The
reconfiguration was implemented using SystemACE CF
solution and the control function of the SystemACE module
was inserted into the SW code. The module-based partial
reconfiguration design flow is used to implement the two
contexts in the Virtex II Pro. In the implementation, 920
LUTs and 4 Block RAMs are required for the context
containing the channel estimator, and 1254 LUTs, 6 Block
RAMs and 12 Block Multipliers are required for the other
context. The static part requires 1199 LUTs and 25 Block
RAMs. 21 bus macros are used to connect the static part
and dynamic contexts. The size of the partial bit streams
generated for the context-1 and the context-2 are 278k bytes

and 280k bytes respectively. When the system is running at
100 MHz, the decoding time of one slot of data is 9.66 ms
including the reconfiguration latency.

Evaluation A fixed hardware and a pure software
implementation have been developed as reference designs.
In the fixed-hardware implementation, the processing time
for decoding one slot of data is 1.06 ms at 100MHz, but the
design doubles the resource requirement compared to the
RTR system. In the full software implementation, the
processing time for one slot of data is 294.6 ms, over 30
times compared to the RTR system. This does not fulfill the
real-time requirements.

The WCDMA detector design case is based on sample
by sample processing and is not ideal for demonstrating the
RTR benefits. It was selected for the validation of the
SystemC-based design methodology. Through the design
case, the estimation approach and the DRCF modeling
approach have shown their usefulness by providing
reasonably accurate results without going into low-level
implementation. With C code and test data that were
available in the WCDMA detector design case, the design
at the system-level took less than a week.

4.2 Wireless LAN

In this section, the prototyping of a HIPERLAN/2 [13]
RSoC on ARM integrator prototyping platform is
described. ARM Integrator includes the ARM AHB
motherboard, the core modules containing ARM processors
and the logic modules containing FPGAs.

An ANSI C model has been developed for the MAC
and physical layers’ functionality of the system. The size of
the model is 20000 lines of code. Using the ANSI-C model
as input, OCAPI-xl models of the HIPERLAN/2 MAC and
physical layers have been developed. For the high level
exploration, high-level OCAPI-xl processes (procHLHW,
procHLSW and procManagedSW) have been used. Using
the performance estimation (in terms of execution cycles)
capabilities of OCAPI-xl different mappings of
HIPERLAN/2 tasks on hardware and software have been
evaluated and the most promising solution has been
identified.

Based on (a) the system level architecture exploration,
(b) the analysis of the HIPERLAN/2 computational
complexity and (c) performance constraints, two core
modules and two logic modules have been allocated for the
realization of the HIPERLAN/2 system. Each core module
includes an ARM7TDMI processor and each logic module
includes a Xilinx Virtex E 2000 FPGA. The architecture of
the ARM Integrator instance that has been selected for the
realization of the HIPERLAN/2 system is shown in
Fig. 4. The first core module acts as protocol processor
realizing the major part of the HIPERLAN/2 DLC
functionality. The second core module realizes the lower

 5

Fig. 4 Architecture of selected ARM Integrator platform instance.

Inter

Loop on MBs
Loop on blocks

Loop on VOPs

Intra

100110
Scan-1 VLC-1

Inter

Intra

Buffer YUV

+

Memory

FPGA
Fabric

MicroBlaze soft processor on FPGA fabric

Memory

Frame
Buffer 2

Frame
Buffer 2

Color
Transform

Current
Vop

AC DC
Pred-1

Decode
Motion

Decode
Header

Comp.
Block

Text.
Block

Motion
Comp. Q-1+IDCT

Fig. 5Block diagram of the simple profile MPEG-4 video decoder
with indication of final HW/SW partitioning

part of the HIPERLAN/2 MAC functionality and also
controls the operation of the baseband processing part. The
first logic module (bottom FPGA) realizes the frequency
and data domain parts of the baseband receiver. The second
logic module (top FPGA) realizes the baseband transmitter,
the time domain blocks of the baseband receiver, the
interface to MAC and a slave interface to an AMBA bus.

In the next step the high level OCAPI-xl model has
been refined by changing processes’ types from high level
to low level (procOCAPI1 and procANSIC). This allowed a
cycle accurate simulation of the complete system
functionality and confirmation that timing constraints are
met. After this step, hardware and software development
started. The ARM development tools have been used to
map the developed C++ code on the ARM processors’ of
the targeted platform. The code and the data for the tasks
are stored in SDRAM memory. The size of the code
running on the protocol processor is 1.4 Mbytes while the
size of the code running on the second processor is 50
Kbytes. Both ARM processors operate at 50 MHz.

A typical FPGA design flow has been adopted for the
realization of the tasks assigned on the platform’s logic
modules starting from VHDL. The total utilization of the
bottom logic module (FPGA) is 85% (93 I/Os, 14923
function generators, 12164 CLB slices, 6368 flip
flops/latches). The total utilization of the top logic module
is 89% (312 I/Os, 16527 function generators, 11252 CLB
slices, 8544 flip flops/latches). The size of the configuration
files for the two FPGAs is 1,2 Mbytes. Two clocks of 40
and 80 MHz are driven in each FPGA.

Evaluation The performance results presented above from
the realization of the HIPERLAN/2 system on the ARM
Integrator platform are expected to improve in a
reconfigurable SoC implementation. This is due to the
overheads introduced by the ARM Integrator platform
architecture. The use of the proposed system level
architecture exploration approach allowed the definition of
an efficient architecture that satisfied the targeted

performance constraints. No time consuming iterations and
feedback loops from the low level implementation stages
for architecture modifications were required.

4.3 MPEG4 Decoder

MPEG-4 Video Decoder (see Fig. 5) has been selected to
demonstrate that OCAPI-xl based approach, as described in
Section 3, is a highly suitable approach for designing the
reconfigurable SoCs at the system level.

The initial C/C++ code was obtained from Final Draft
International Standard sources. After the optimisation
phase, the design proceeded with modelling of performance
estimation in OCAPI-xl environment. A number of small
tests were done on the board to find the operator execution
times and memory access times and to select proper
memory architecture. Taking into account the analysis
results from optimisation phase, the most CPU time and
memory access demanding blocks of the decoder were
selected to become the candidates for HW acceleration. To
demonstrate early RSoC design evaluation, the design was
modelled in two flavours:

• Configured as pure SW version of MPEG-4
decoder running on soft processor core.

• Configured as HW accelerated version, where
most cycle demanding blocks have been
implemented in reconfigurable HW.

 6

After a SW processes annotation, the performance
estimation started with simulation of the pure SW version
of the decoder. For HW accelerated version of the decoder,
the OCAPI-xl processes have been redefined to high-level
hardware (HLHW) type. Comparing the average frame time
with pure SW version, the speed-up of factor 4.2 was
estimated. The final HW/SW partitioning of the MPEG-4
video decoder for both versions is shown in Fig. 5.

Evaluation The key benefit shown by this design case is
demonstration of ability of high-level simulation-based
performance estimation and evaluation of context switching
between the different computation resources. Based on the
performance estimation results, it is possible to construct a
trade-off curve for considered HW/SW partitions. This
gives the designer unique opportunity to evaluate at early
stage of the design process, which of the components is
beneficial to implement in reconfigurable HW and which
ones will be running in SW. As a result, design time costly
lower-level iterations are eliminated.

The accuracy of estimations has been measured by
comparing the difference between the estimated
performance and board performance. The difference is 8%
which is acceptable for the most relevant test sequence.

The design was mapped on Xilinx’s Multimedia
Development Board containing xc2v2000 Virtex-II FPGA
with a single embedded MicroBlaze soft processor gaining
46% utilization (5000 slices) for HW accelerator and 71%
utilization (7703 slices) for the whole decoding system. It
uses 33% of available 18x18 multipliers, 76% block RAMs
and 52% of LUTs. Synplify-Pro FPGA synthesis tool and
vendor specific toolsets have been used in the
implementation phase.

5. CONCLUSIONS

For the efficient design of complex RSoCs within strict
design time constraints, efficient design methodologies at
the early design stages are required. The proposed
architecture design space exploration methods rely on the
use of SystemC language and OCAPI-xl environment.
Through appropriate extensions, they address
reconfiguration issues at a high level. The effectiveness of
the proposed methods has been proven through their
application on three real life systems, borrowed from
different domains: a WCDMA system, a WLAN system
and an MPEG4 decoder.

6. REFERENCES

[1] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh,
W. Bohm, J. Hammes, “Automatic Compilation to a Coarse
Grained Reconfigurable System-on-Chip”, ACM
Transactions on Embedded Computing Systems, vol. 2, No.
4, 2003, pp. 560-589.

[2] J. Becker, R. Hartenstein, “Configware and Morphware -
Going Mainstream”, Journal of System Architecture, vol. 49,
2003, pp. 127-142.

[3] D. Fröhlich, B. Steinbach, T. Beierlein, “UML-Based Co-
Design for Run-Time Reconfigurable Architectures”, In
2003 Forum on Specification & Design Languages, pp. 285-
296.

[4] T. Schattkowsky, W. Mueller, A. Rettberg, “A Model-
Based Approach for Executable Specifications on
Reconfigurable Hardware”, In 2005 Design Automation and
Test in Europe Conference, pp. 692-697.

[5] C. Bobda, “Synthesis of Dataflow Graphs for
Reconfigurable Systems using Temporal Partitioning and
Temporal Placement” Dissertation, University of
Paderborn, 2003.

[6] J. Noguera, R. M. Badia, “System-Level Power-
Performance Trade-offs in Task Scheduling for Dynamically
Reconfigurable Architectures”, In 2003 International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pp. 73 – 83.

[7] R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida, N.
Bagherzadeh, H. Singh, “A Framework for Reconfigurable
Computing: Task Scheduling and Context Management”,
IEEE Transactions on VLSI Systems, vol. 9, issue 6, 2001,
pp. 858 – 873.

[8] CoWare Inc (2004) Available: http://www.coware.com

[9] OCAPI-xl (2004) Available:
http://www.imec.be/ocapi/welcome.html

[10] SystemC (2004) Available: http://www.systemc.org
[11] R. P. Wilson et. Al, ”SUIF: An Infrastructure for Research

on Parallelizing and Optimizing Compilers”, In 1994 7th
ACM SIGPLAN symposium on Principles and practice of
parallel programming, pp. 37-48.

[12] M. J. Heikkila, “A novel blind adaptive algorithm for
channel equalization in WCDMA downlink”, In 2001 12th
IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, vol. 1, pp. 41- 45.

[13] ETSI, “Broadband Radio Access Networks (BRAN);
HIPERLAN type 2; Physical (PHY) layer, v 1.2.1”, 2000

