
Chapter 17

PUSSEE METHOD IN PRACTICE
Specification and design of an embedded telecom system based
on HIPERLAN/2 protocol

Nikolaos S. Voros
INTRACOM S.A., Patra, Greece

Abstract: The main goal of this chapter is to demonstrate the feasibility of PUSSEE

development framework. For that purpose, a case study borrowed from the
telecommunication domain is used in order to exhibit the applicability the
method and associated tools for the design of complex systems. The
application described is part of an embedded system based on HIPERLAN/2
protocol.

Key words: UML-B profile, embedded telecom systems, formal refinement, system
decomposition.

1. AN OVERVIEW OF HIPERLAN/2 PROTOCOL

HIPERLAN/2 protocol provides data rates up to 54 Mbits/sec for short
range (up to 150 m) communications in indoor and outdoor environments.
Typical application environments are offices, homes, exhibition halls,
airports, train stations and so on.

In order to specify a radio access network that can be used with a variety
of core networks, the HIPERLAN/2 standard [1] provides a flexible
architecture that defines core independent physical (PHY) and Data Link
Control (DLC) layers and a set of convergence layers that facilitate access to
various core networks including Ethernet, ATM and IEEE 1394 (Firewire).

The air interface is based on time division duplex (TDD) and dynamic
time division multiple access (TDMA). It relies on cellular networking
topology combined with ad-hoc networking capability, and supports two
basic modes of operation: centralized mode (CM) and direct mode (DM). In

2 Chapter 17

the CM operation every radio cell is controlled by an access point covering a
certain geographical area, and mobile terminals communicate with one
another or with the core network through the access point. In the DM
operation, mobile terminals in a single cell network can exchange data
directly with one another. The access point controls the assignment of radio
resources to the mobile terminals. Figure 17-1 outlines the protocol
architecture, while Figure 17-2 delineates the scope of HIPERLAN/2
standards.

Figure 17-1. An overview of HIPERLAN/2 architecture

The system under design is part of the access point system and consists
of the AP scheduler and the modem. The next paragraphs describe the design
of the specific case study using the design steps supported by PUSSEE
method.

In Figure 17-3 the final architecture of a prototype for the HIPERLAN/2
based system is described. The final system implementation employs both
hardware (e.g. the HIPERLAN/2 modem), and software (e.g. DLC layer)
components. Regarding the software part of the system, the design of the
Frame Scheduler for the Access Point (AP) is presented. The latter, lies in
the MAC sub layer of the DLC layer and is responsible for the design of
MAC frames.

17. PUSSEE method in practice 3

Physical Layer

Convergence Layer

Control Plane User Plane

DLC Control SAP

DLC
Connection

Control

Association
Control

Radio
Resource

Control

RLC

DLC User SAP

Error Control

Radio Link Control sublayer

Medium Access Control

Data Link Control -
Basic Data Transport Function

Higher Layers

Scope of HIPERLAN/2
standards

CL SAPs

Figure 17-2. The scope of HIPERLAN/2 standards

ARM1 Memory

Memory

EMI

PCI
DMA
Other

Peripherals

Modem RF Ctrl ARM2 Memory
DMA
Other

Peripherals

Bridge

DLC, Convergence Layer

Physical Layer

MAC layer

Figure 17-3. The HIPERLAN/2 prototype

4 Chapter 17

2. SYSTEM SPECIFICATION USING UML-B

PROFILE

In Figure 17-4 part of the overall system specification using UML-B
profile [2] is presented, and corresponds to the SCH box (Access Point
Sceduler) depicted in Figure 17-1. The main parts of the Access Point
Scheduler [1] include:

• AP_SCHEDULER which is responsible for the design of a MAC
frame.

• TRAFFIC_TABLE that describes the next frame's logical channel
entries required, according to the resource requests.

• FRAME_INFO that decides the number of information elements
(IEs) and the number of blocks required (each block contains three
IEs, the number of idle IEs and the number of padding IEs).

• DECISION module that contains the decision algorithm used.
• FCH that contains the resource grants for the FCCH channel.

Figure 17-4. Description of HIPERLAN/2 Access Point Scheduler using UML-B profile

AP_SCHEDULER_1 is a formal refinement of the initial
AP_SCHEDULER. The “imports” arrows refer to the corresponding
keyword of B language and represent B modules containing part of
AP_SCHEDULER functionality.

17. PUSSEE method in practice 5

3. FORMALLY PROVEN MODEL REFINEMENT

For the design of the AP scheduler subsystem, the UML models of
Figure 17-4 were translated to B machines using U2B translator [3]. The
functionality of each class (including its attributes and operations) is
thoroughly described in [4].

Figure 17-5 presents the B code produced by U2B translator for the
AP_SCHEDULER class. AP_SCHEDULER_1 class was also translated to
B using U2B, and the required proof obligations for the specific model
refinement were generated and proven using Atelier B [5], as depicted in
Figure 17-6.

Figure 17-5. The initial B code produced for the AP_SCHEDULER

During the refinement process, appropriate predicates were defined to
express the properties of the linking (gluing) invariants between the initial B
model and the refined B model. For example, the following invariant is
defined in the B code of Figure 17-5:
traf_table_index: AP_SCEDULER --> 0..TrafficTableSize

which states that variable traf_table_index belongs in the range
0..TrafficTableSize. The specific invariant generates the following
proof obligations:

6 Chapter 17

1. traf_table_index ≤ TrafficTableSize

2. 0 ≤ traf_table_index

Figure 17-6. The interactive prover of Atelier B

The proof obligations generated were mainly proven using the automatic
prover of Atelier B, but there were also cases where the designers had to
prove several proof obligations using Atelier B’s interactive prover.
Moreover, due to the complexity of certain proof obligations, the designers
experienced excessive numbers of proof obligations (sometimes more than
100), which were impossible to prove using the interactive prover. In that
cases, there were two different alternatives to follow:

• Introduction of an additional intermediate refinement level between
successive model refinements, to express some properties at an
intermediate level of detail. In many cases this technique can
improve the task of proving significantly, while the non proven
proof obligations can be proven more easily at the lower refinement
levels.

• Introduction of a new module (or more if necessary) to simplify the
proving procedure. The new module can make simpler the complex
operations (the ones that create excessive numbers of proof

17. PUSSEE method in practice 7

obligations). The B machine of the new module is imported to the
lower level refinement with the use of the IMPORTS clause,
supported by B language.

In the case study presented, the first alternative was adopted, while in
cases of excessive number of proof obligations new intermediate B modules
were imported. The refinement process revealed 3.343 proof obligations;
3.106 of them (92,6%) were automatically proven using Atelier B’s
automatic prover, while 247 proof obligations (7,4%) were proven using the
interactive prover of Atelier B.

4. SYSTEM DECOMPOSITION

System decomposition takes place using the decomposition assistant
tool [6]. The tool intends to support system partitioning into hardware and
software; it accepts formally proven system models described in eventB [7],
and based on a profile like the one presented in Figure 17-7, produces
subsystems along with the required communication interface. The
subsystems and their interfaces can be further formally refined until a fully
functional subsystem model is reached. In order to identify and prove the
proof obligations required during subsystem refinement, Atelier B is used.
The final subsystem implementation emerges through direct translation of
the eventB code either to C or to VHDL. For the latter, the BHDL
translator [8] developed in the context of PUSSEE Project [9] can be
employed.

For the HIPERLAN/2 case study, the B models emerged from the
previous design stages were used as input to the decomposition assistant tool
in order to partition the system into hardware and software. Part of the
system decomposition profile used is presented in
Figure 17-7. It contains the number and the names of the subsystems
specified by the designers, as well as variable allocation. Communication is
deduced from that description, using default communication protocol for
accessing data. These communication protocols are likely to be extended.

The system under design was decomposed in two subsystems:
• SS_SCH subsystem which corresponds to the functionality of the

system UML-B model of Figure 17-4.
• SS_MODEM subsystem which contains the part of the initial system

that contains the HIPERLAN/2 modem functionality.

8 Chapter 17

Figure 17-7. The decomposition profile for the telecom case study

5. HARDWARE/SOFTWARE ALLOCATION &
IMPLEMENTATION

The final step of the design process was the hardware/software allocation
and the generation of final code. In the context of the HIPERLAN/2 case
study, only the SS_SCH subsystem was implemented. For that purpose,
2291 lines of C code were generated using Atelier B’s C code generator and
the final C code has been tested on ARM7 TDMI.

17. PUSSEE method in practice 9

6. PUSSEE METHOD EVALUATION

The next paragraphs describe the pros and cons of using the proposed
method in the context of an industrial environment for the development of
complex telecommunication products.

6.1 Methodology adoption

As already described in Chapter 3, the PUSSEE method relies on the
combined use of UML and B. The UML specifications are written in a B
compliant manner, using the UML-B profile proposed by the PUSSEE
approach.

Even though the PUSSEE method appears to be compatible with the
practices used by many telecom companies, the use of B language for
proving system properties might be a barrier to the extensive use of the
method. The experience gained from the design of HIPERLAN/2 system
revealed that a strong mathematical background (especially in the domain of
predicate calculus) is required for the engineers that plan to use the PUSSEE
approach. As a result, the potential use of the PUSSEE method as part of an
existing development process will definitely require training courses of the
design teams in order to use productively the proposed approach. The
cost/benefit ratio of the latter will definitely play a crucial role in the future
adoption of PUSSEE method.

The potential use of PUSSEE method in practice should rely on a
combination of the U2B and Atelier B tools. For Atelier B, a possible
configuration would include:

• Atelier B software: Fully functional, basic configuration for one
server including standard graphic user interface, syntax and type
checker, proof obligations generator, multi-pass automatic prover
and interactive prover with graphic user interface, documentation
tools and translators for C and C++.

• Training: Training sessions for understanding fundamental
principles of the B method (Level 1) and how to develop in B (Level
2).

• On going support: Support including, answering questions and
determining the best way to efficiently introduce B in a real world
design environment development process will be necessary.

The aforementioned requirements reflect the basic version of Atelier B
and their cost is 45.000 Euros1 [5]. Additionally, the configuration may also
include:

1 The prices reported are the official prices of ClearSy S.A., June 2004.

10 Chapter 17

• User rule proof tools for validating the mathematical rules added
by users during proof, at the cost of 6.000 Euros.

• Training for an additional design team at the cost of 15.000 Euros.
• Four additional licenses to supplement the basic license at the cost

of 3.600 Euros.
• Maintenance of the basic tool version including bug fixes and

product updates at the cost of 4.800 Euros.
Table 17-1 presents a summary of the total cost of PUSSEE method.

Table 17-1. Total cost of PUSSEE method tools and training
TOOL COST
U2B translator Free of charge

Atelier B: Basic configuration 45.000 Euros

User rule proof tools 6.000 Euros

Additional training 15.000 Euros

Additional licenses 3.600 Euros

Maintenance 4.800 Euros

Total cost 74.400 Euros

One additional issue that must also be taken into account is the fact that

the method must be mature enough before adopted for the development of
commercial products. In the context of a product line, maturity is close
related to parameters like stability, on going support, adequate
documentation and ability to handle highly complex system models. In its
current version, the method is mostly supported by academic tools or
prototypes that are still under development. In the context of the case study
presented, the tools supporting PUSSEE methodology have proven their
value. What remains is to see the combination of PUSSEE methodology and
the supporting tools under a more robust development framework.

6.2 Methodology expressiveness

B language is traditionally used for the development of safety critical
systems. Thus, in order to provide error free system models of the system
under development there are several descriptions that must be imposed. The
constraints can be divided into four main methodological notions of B
developments:

• Preservation of the local invariants

17. PUSSEE method in practice 11

- The operations of a specific machine can be called only by one
machine. This restriction prevents data sharing involving multiple
write access.

- Simultaneous operation calls are forbidden.
- Each variable of a machine can be altered by, at most, one of the

simultaneous substitutions of an operation.
• Strict tree call structure

- Loops within the calling structure of a set of machines are not
allowed.

- Local operations cannot call other operations within the same
machine.

• Encapsulation principle
- A variable of a machine can only be written by the operations of

the machine containing it.
• No recursitivity of the operation calls

- Simultaneous operation calls are forbidden.
Even though the aforementioned restrictions are essential for the

development of formally proven system models, there are cases (especially
in the telecom domain) where they might be restrictive. For example, during
the design of the AP scheduler a significant part of the scheduler had to be
re-designed in order to be compliant with B language primitives. One
additional reason that imposed redesigning system parts was the excessive
number of proof obligations generated form the initial model. In general, the
use of B language requires the definition of a significant number of system
properties that must be expressed in the form of invariants. The latter, can
lead to significant problems during the proving process, especially when we
are dealing with complex systems.

6.3 Tool support

In the context of the HIPERLAN/2 case study, U2B translator, Atelier B
and decomposition assistant have been mainly used. The experience gained
from their use is described in the next paragraphs.

6.3.1 U2B translator

U2B is a tool, which through a flexible user interface allows translation
of UML models (written using the UML-B profile) to B language. It is
available in two flavors:

• U2B3 (version 3) that relies on UML models created using Rational
Rose (and the conventions adopted by Rational) and,

12 Chapter 17

• U2B4 (version 4), which is tool neutral and relies on XML. U2B
translates the UML models first to XML language and then to B
code. The use of U2B4 for the translation of the UML-B models of
the AP scheduler has reveled several restrictions in the way the
UML models should be constructed. Additional, there is an inherent
difficulty to deal with complicated models.

Additional restrictions of the U2B tool come from the fact that B does
not support cyclic structures. As a result, in order to make a B model, the
designers had to produce tree-structured UML model. Moreover, during the
construction of the UML models the designers should keep in mind that the
system will be translated in B and thus using B definitions for variables and
functions. If this is not the case, U2B will create a B model, but it will
probably not pass the proofing process.

Based on the experience gained for the use of U2B tool, we could say it
appears to be a promising tool, which could potentially bridge the gap
between UML and B by isolating the designer from the B language details.
As a result, designers that are not experts in using B language could use
PUSSEE method and take advantage of its benefits. The latter presupposes
that UML-B profile and the U2B can be used as a front end that isolates the
designers from B language details as much as possible.

6.3.2 Atelier B

Atelier B was the main tool employed for the development of B models
of HIPERLAN/2 case study. It was also used for generating and proving the
required proof obligations between successive refinements. At the last
phases of the development cycle, Atelier B was also used to produce C code
for the software part of the final system.

From the total number of POs generated during the refinement process,
92,6% were automatically proven using Atelier B’s automatic prover, while
only 7,4% of them were proven interactively. Despite the high percentage of
automatically proven POs, there were restrictions in Atelier B which are
directly related to the nature of B language. In addition, due to the excessive
number of proof obligations produced during the early design phases of
system design, significant model restructuring was required. Despite the
effectiveness of the proving process of Atelier B, there were also cases
where the designers came across inefficiencies throughout the proving
process. The rule base of Atelier B, in spite of the 2.200 rules it supports,
should be enriched in future tool versions in order to ease the proving
process. Significant problems were also experienced with proofs that
involved cardinal numbers and Σ functions.

Interoperability among the tools is another significant parameter for the
design of complex systems. Communication (e.g. model exchange) between

17. PUSSEE method in practice 13

Atelier B with other tools like U2B would definitely be an advantage.
Moreover, availability of the tool for different operating systems might be
helpful towards this direction.

6.3.3 Decomposition assistant

Decomposition assistant aims at producing system partitions into
hardware and software subsystems, based on formally proven system
models. In the current version, it only accepts as input system models
described in eventB. In the case study presented, this was a major problem
since Atelier B relies on B language for generating and proving proof
obligations. As a consequence, the designers had to use translators for
translating eventB to B and vice versa [10]. This produced significant delays
in the partitioning process since the two languages are not fully compatible.

Moreover, the user interface provided by the tool was not adequate,
while significant support was required as far as the subsystem interfaces
were concerned. What would be expected in forthcoming versions of the tool
would be a library of formally proven standard interfaces that could be
customized, and possible extended, according to the needs of each
subsystem.

6.4 Final product

The last part of the HIPERLAN/2 case study was the generation of C
code for the final implementation of the system. The code produced was
based on the B implementations constituting the AP scheduler, and for its
production Atelier B’s automatic translator for C code has been employed.
As a general remark we could mention that the code produced by Atelier B
was well documented and easy to understand by the designers (the code
produced was about 2291 lines in C). Although no optimization techniques
were used, it would be preferable to have the ability to produce code for
different implementation platforms e.g. for ARM7 TDMI.

In terms of productivity, the code production is a fairly easy process
while the fact that system designers are able to produce C code form
formally proven to be correct B implementations is definitely an advantage
since in allows the detection of design flaws early enough in the design
process.

14 Chapter 17

7. SUMMARY

In the previous sections we presented an insight on how PUSSEE
method could be employed in a real world design environment. The case
study presented is based on HIPERLAN/2 protocol, and has been designed
using PUSSEE method and the tools supporting it. For the initial system
specification the UML-B profile has been adopted, while for system design
B language/method and Atelier B have been used. The latter has been
utilized in order to verify formally the correctness of the model refinements
in B, as they emerge from the U2B translator.

Based on the experience gained form the design of the HIPERLAN/2
case study, an initial evaluation of PUSSEE method has been presented. In a
nutshell, PUSSEE method appears to be a promising design approach, the
benefits of which could be exploited in the context of a real world design
environment. Nevertheless, there are issues that must be taken into account
in future versions of the method, mainly related to the tool interoperability
and their efficient use in an existing product development process.

REFERENCES

1. ETSI. 2000, Broadband Radio Access Networks BRAN; HIPERLAN Type 2; Data Link
Control (DLC) Layer Part1: Basic Data Transport Functions, ETSI TS 101 761-1
v1.1.1.

2. C. Snook, M. Walden, Use of U2B for Specifying B Action Systems, Proceedings of
International Workshop on Refinement of Critical Systems: Methods, Tools and
Developments, Grenoble, France, January 2002.

3. C. Snook, M. Butler, U2B Downloads, Available at: http://www.ecs.soton.ac.uk/~cfs/
U2Bdownloads.htm.

4. K. Antonis, N. Voros, D3.1.2: Specification of the Telecom System-on-Chip
Experiment, IST-2000-30103 PUSSEE, Project Report, 2002.

5. Atelier B, Available at: http://www.Atelier B.societe.com/, 2003.
6. T. Lecomte, D4.4.1: Methodological Guidelines: Interface based synthesis/ refinement

in B, IST-2000-30103 PUSSEE, Project Report, 2003.
7. ClearSy, Event B Reference Manual v1.0, Available at:

http://www.atelierb.societe.com/ressources/evt2b/eventb_referencemanual.pdf,
2001.

8. KessDA, BHDL User Guide Preliminary Version, Available at:
http://www.keesda.com/pussee/bibliography.htm

9. PUSSEE Project, Available at: http://www.keesda.com/pussee, 2003.
10. MATISSE Project, Event B to B Translator User Manual, IST-1999-11435,

Project Report 1999.

http://www.ecs.soton.ac.uk/~cfs/
http://www.Atelier
http://www.atelierb.societe.com/ressources/evt2b/eventb_referencemanual.pdf
http://www.keesda.com/pussee/bibliography.htm
http://www.keesda.com/pussee

